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EXECUTIVE SUMMARY 

The CONDUCTOR project’s main goal is to revolutionize the landscape of transportation by 

spearheading advanced traffic and fleet management solutions for the seamless and globally 

optimal movement of passengers and goods. At its core, CONDUCTOR aims to establish an 

innovative paradigm by integrating dynamic balancing, priority-based vehicle management, and 

cutting-edge technologies into the Cooperative, Connected, and Automated Mobility (CCAM) 

ecosystem. 

The document "CONDUCTOR D3.3 Specification and initial version of anomaly detection 

routines" primarily addresses the development of anomaly detection methods in traffic patterns 

and transport demand for the CONDUCTOR project. It provides an exhaustive literature review, 

outlining various methodologies in the field, and discusses the project's focus on employing 

machine learning and statistical approaches for anomaly detection. The document details the 

technical aspects of the project, including data sources, methodology, model selection, 

implementation, and preliminary results. It emphasizes the importance of identifying and 

understanding traffic anomalies for effective traffic management and includes evaluations of 

different models used for anomaly detection. 

The deliverable D3.3 focuses on the specification and initial implementation of these detection 

routines. It leverages a blend of machine learning and statistical methods to identify irregular traffic 

patterns and transport demand anomalies. This document presents comprehensive literature 

reviews, detailed methodology, and evaluation of various models, laying a foundation for future 

iterations and improvements in anomaly detection within the CONDUCTOR framework. The 

project is a significant step towards revolutionizing transportation management with intelligent, 

data-driven solutions. 

Keywords: Cooperative, Connected, and Automated Mobility (CCAM), Traffic and Fleet 

Management, Dynamic Balancing, Machine Learning and Data Fusion, Interoperability, 

Autonomous Vehicles, Urban Traffic Reduction, Demand-Response Transport, Open Platform 

Integration, Quality of Life Improvement. 
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1 INTRODUCTION 

1.1 Background 

The landscape of modern transportation is evolving rapidly, driven by technological advancements 

and the integration of autonomous and connected vehicles. In response to these changes, the 

CONDUCTOR project is actively engaged in pioneering efforts to shape the future of transportation 

through resilient multimodal autonomous mobility. One of the critical components of this initiative is 

the development and implementation of anomaly detection routines, a fundamental aspect 

addressed in this deliverable (deliverable D3.3). 

CONDUCTOR leverages state-of-the-art fleet and traffic management solutions, elevating them 

through the incorporation of machine learning and data fusion. The project's focal point is to empower 

transport authorities and operators to act as "conductors" of future mobility networks, thereby 

orchestrating efficient, responsive, and centralized control over traffic and fleets. The initiative seeks 

to position autonomous vehicles as central to future city landscapes, enhancing safety measures 

and offering flexible, responsive traffic management. 

The project’s anticipated outcomes encompass a reduction in urban traffic and congestion, 

diminished pollution levels, and an overall improvement in the quality of life for city dwellers. The 

project's innovations will be consolidated into a common, open platform, fostering interoperability of 

traffic management systems. Validation of these advancements will occur through three distinct use 

cases: 

1. Use Case 1 (UC1): Integration of traffic management with intermodality. 

2. Use Case 2 (UC2): Testing demand-response transport solutions. 

3. Use Case 3 (UC3): Addressing urban logistics challenges. 

Each use case will undergo rigorous testing and validation, combining simulations with real-life data 

to ensure the practicality and effectiveness of the proposed solutions. By creating a comprehensive, 

open platform, CONDUCTOR aims to set new standards in traffic and fleet management, ushering 

in a future marked by reduced urban congestion, lower pollution levels, and an elevated urban living 

experience. 

1.2 Objectives and contribution 

Deliverable D3.3, titled "Specification and initial version of anomaly detection routines," is a pivotal 

document within the CONDUCTOR project. The primary objective is to provide a comprehensive 

specification of anomaly detection techniques that will empower the identification of specific traffic 

patterns. These patterns, ranging from routine traffic flows to emerging critical network anomalies, 

require identification in case remedial actions and response plans need to be implemented as 

countermeasures. 

This deliverable is intricately linked to Task 3.5, which is spearheaded by Frontier Innovations as the 

lead beneficiary, with the valuable contributions of Nommon for the Anomaly Detection in Transport 

Demand. Task 3.5, spanning from Month 3 to Month 30, focuses on the development of advanced 

situation detection capabilities. These capabilities are crucial for identifying traffic patterns and 

emerging critical network and traffic anomalies, facilitating adaptive measures such as network 

adaptation, traffic redirection, and coordination. 

This deliverable’s aim to present the types of incidents that will be handled by CONDUCTOR, both 

in the supply and the demand side. In the first iteration of the deliverable, since the final datasets 



Introduction   

PU (public) | V1.0 | Final   Page 9 | 44 

that will be used in the project are not yet finalized, a more methodological approach will be followed, 

with an initial implementation of anomaly detection and forecasting techniques aiming to showcase 

the capabilities of the CONDUCTOR components. 

As the implementation of CONDUCTOR is in line with the agile methodology, each individual 

component is implemented in parallel, and the findings and key assumptions will be validated during 

the first iteration. After the first iteration and the first demonstration of results every output will be 

adjusted according to the feedback and will be enriched in the next iteration of the deliverable (D3.4). 

1.3 Outline 

Anomaly detection in traffic patterns and transport demand is a critical aspect of traffic management, 

operations and control, especially event detection. In this deliverable our aim is to investigate 

methods for achieving detection, coming from various sources. Those sources include, amongst 

others, Origin-Destination (OD) matrices and traffic flow data from embedded sensors that monitor 

the infrastructure of a network.  

Our objective is to conduct a comprehensive analysis, leveraging state-of-the-art machine learning 

algorithms and data fusion techniques, to detect supply and demand anomalies. The identification 

of such anomalies serves as a pre-emptive mechanism, alerting "conductors" to potential problems 

in real-time. 

A key focus of this deliverable is to provide a data-driven definition of anomalies. In the context of 

traffic, anomalies signify substantial deviations from the expected normal traffic behaviour, 

encompassing a spectrum of events that can disrupt the regular flow of vehicles within a network, 

distinguishing them from traditional incident detection as often claimed in existing research papers. 

Recognizing and characterizing these anomalies is indispensable for proactive traffic management, 

facilitating timely responses to emergent situations. 

In the context of transport demand, anomalies are considered as every abnormal (or non-recurrent) 

demand behaviour that would require the application of special measures on the supply side (beyond 

normal service functioning) to address the needs of the travellers. 

It is essential to emphasize that anomaly detection and incident detection are not always the same 

thing. For example, an incapacitated vehicle during a period of low traffic flow may not impact the 

overall network, hence does not pose an anomaly to be detected. This document unfolds with an 

Executive Summary, encapsulating the essence of the anomaly detection routines and their 

significance within the broader CONDUCTOR project. The subsequent sections delve into the 

background, objectives, and contributions of Deliverable D3.3. Following the introduction, detailed 

specifications and the initial version of the anomaly detection routines will be presented, aligning with 

the goals set forth by Task 3.5. 
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2 LITERATURE REVIEW 

2.1 Anomaly Detection in Traffic Patterns  

Various methodologies have been proposed for detecting anomalies in traffic patterns, broadly 

categorized into two classes. The first-class leverages data from individual vehicles, utilizing 

automatic vehicle identification systems [1], cameras for individual vehicle identification [2], or GPS 

and social media data from navigation apps like Waze [3]. The second class employs time series 

data from embedded loop sensors, focusing on aggregated measures of vehicle counts, occupancy, 

and speed. 

Our approach falls, at least in the scope of the project, within the second class, and in this section, 

we provide a summary of pertinent literature. One prevalent method is basic pattern matching, 

exemplified by the California algorithms and their variants [4] [5]. These algorithms compare 

occupancy values at adjacent sensors, employing pair-wise metrics to detect deviations from 

established thresholds. 

A second notable approach is the McMaster algorithm, rooted in catastrophe theory [6] [7]. It 

constructs a lower bound of occupancy-flow data based on uncongested regimes, defining critical 

occupancies and flows to categorize system states. Calibration of thresholds and fitting parametric 

forms pose challenges but have been addressed in subsequent works, such as using a particle-

swarm approach [8]. 

Addressing the difficulty in calibrating incident detection models due to data quality issues [9], recent 

methodologies focus on clustering data into typical and anomalous states. [10], distinguish non-

recurrent congestions using journey time scaling, while Piciarelli and Foresti [11] cluster vehicle 

trajectories to identify anomalous events. Gaussian Mixture Hidden Markov Models [12] and 

approaches based on change-point detection [13] also contribute to anomaly detection. 

A third approach involves the standard normal deviate (SND) methodology [14], constructing mean 

and variation values for traffic variables. Calibration challenges are addressed by pre-filtering 

datasets [15] or using robust summary statistics [16]. Spatial information is incorporated in SND-

based algorithms [17], while Chakraborty proposes noise threshold construction with spatial-

temporal correlations [18]. 

Machine learning and deep learning methodologies have gained traction, such as Yuan et al. [19] 

incorporating traffic data, weather information, and spatial structure into a convolutional-LSTM 

model. Computational intensity and data quality issues remain challenges for these methods. 

Our proposed approach draws inspiration from this diverse literature. Like the McMaster algorithm, 

we segment the density-flow diagram into distinct regions. However, unlike McMaster, our 

segmentation is data-driven and parameter-free, akin to the SND algorithm. This method combines 

segmentation principles with robust statistical approaches, avoiding the challenges of obtaining 

labelled data and calibrating an event detection system. 

2.2 Anomaly Detection in Transport Demand 

The knowledge of OD flows is crucial for traffic operations and control. The characterisation of 

mobility patterns and demand and the understanding of anomalies in those patterns allows us to 

anticipate and give response to the needs of the travellers. As mentioned in Section 1.3, from the 

demand perspective, we understand as anomaly every abnormal (or non-recurrent) value that would 

require the application of special measures (beyond normal service functioning). Usually, anomalies 

in the transport demand can be explained by special events (such as holidays, strikes, or sport 
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events), incidents, or weather conditions, each of which requires different remedial actions or 

response plans. These anomalies usually translate into traffic anomalies (and the same happens the 

other way around: traffic anomalies usually generate anomalies in the demand, as travellers tend to 

use other routes and modes to avoid the anomaly). So, usually, anomalies in traffic and anomalies 

in the demand go hand in hand. 

One common approach when detecting anomalies in transport demand is to consider historical data 

as a time series, use it to fit a model and compare the prediction with the actual demand volumes 

[20] [21] [22]. Based on this comparison, the actual demand is classified as a normal value or as an 

anomaly. Additionally, other works analyse the factors that may have caused them (weather 

conditions, especial events, etc.) [23] [24] [25]. Based on that, the anomalies can be classified, and 

response plans can be associated to each class. 

Other works focus on predicting mobility demand patterns (including abnormal or non-recurrent 

ones), looking for models that are robust against anomalies [26] [27] [28]. These works do not detect 

anomalies strictly speaking; however, the design of time series forecasting algorithms that are robust 

to large fluctuations in demand is highly related to the correct identification of anomalies and the 

approaches used are also of interest for this literature review. 

When detecting anomalies, a great challenge is to properly define what an anomaly is. For that, 

some works define and construct a “normal” baseline scenario and look for deviation from that 

baseline [25] [23] [24]. Other works use some kind of confidence intervals to detect and classify the 

anomalies, establishing different levels of anomalies [21]. These intervals can also be used to identify 

when a model recalibration is needed. 

The techniques found in the literature for anomaly detection in transport demand are mainly generic 

methods for time series prediction and anomaly detection. These techniques include traditional 

parametric and non-parametric statistical methods, machine learning models, deep learning models, 

and hybrid methods. Next, we briefly discuss the most relevant ones. 

Among the statistical methods, the more relevant are Kalman filters [26] [28] [21] and Gaussian 

kernel functions [23] [24]. In particular, in those two lasts works the demand distribution of a “normal” 

baseline scenario is estimated using a Gaussian kernel function and anomalies are found with a 

density criterion looking for deviation from the average using a Z-score measure. This allows not 

only the identification of abnormal days but also the location. This information is used to search for 

special events that may cause the anomaly. 

Statistical methods are mainly used with small datasets (small OD matrices or individual OD pairs, 

and short time periods), and have the limitation that they are not very scalable to large datasets. As 

the volume of data increase, machine learning, and specially, deep learning techniques, have 

become more popular. 

Machine learning models include both supervised learning models (linear models [29], support vector 

machines (SVMs) [22], random forest [22], K-nearest neighbour models (K-NN) [26] [28]) and 

unsupervised learning models (principal component analysis (PCA) [30] [26] [28]). The PCA 

technique is mainly used as a data pre-processing step to reduce the dimension of the OD matrices.  

Deep learning models mainly include long short-term memory (LSTM) network-based models [22] 

[29] [20], although regular neural networks are also found [20]. 

Finally, hybrid methods are also proposed. Among these, we highlight four works. Pasiniproposes a 

LSTM encoder-predictor model, which combines the capabilities of LSTM models with a recurrent 

neural network (RNN) encoder-decoder structure to predict the short-term evolution of trainload [20].  

Davis proposes an anomaly detection-based model that combines a LSTM model with and Extreme 

Value Theory (EVT)-based approach [22]. This model uses an LSTM model to predict the demand 

of the next time step of a time series and uses an EVT-based rule to develop anomaly thresholds on 
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prediction errors. This rule is based on a EVT result that states that, under a weak condition, the 

extreme events have a known distribution, called Extreme Value Distribution. 

Following the approach of Zheng [28], Liu proposes a dynamic traffic demand prediction framework 

that combines a parametric with a non-parametric model [26]. For that, PCA is used to extract main 

demand patterns from historical data. If those patterns are considered as “normal”, then a parametric 

model (Kalman model) is used for prediction. Otherwise, a non-parametric model (K-NN model) is 

used. This distinction is based on the conclusions reached in [28], in which the Kalman filter model 

(parametric model) performs better for regular OD flows, while K-NN methods (non-parametric 

model) have a better performance for abnormal patterns.  

Finally, [27] generate a Gaussian conditional random field (GCRF) model trained with a boosting 

approach, using the adaptive boosting (AdaBoost) technique, to enhance the predictive capabilities 

of GCRFs. This method proves to be robust under demand anomalies. 

Regarding the evaluation metrics and the performance measures, the most common and relevant 

metrics are the mean absolute error [26] [28], root mean absolute error [27] [28], mean absolute 

percentage error [27], cumulative variance explanation [26], and temporal relative L2-norm [21]. Most 

of the works used more than one metric in order to assess the results, mainly combining an absolute 

error and a relative error metric. This way complementary information is provided, which allows a 

deeper and more complete performance analysis.  

In almost all the works reviewed, the performance of difference methods is compared, mainly to 

assess the predictive performance of the approach proposed in the work. In general, LSTM networks 

and hybrid models outperform the rest of the models considered, showing the great capability of 

complex deep learning techniques. In particular, Davis et al.  compare the predictive performance of 

their hybrid LSTM-EVT model with that of regular LSTMs, SVMs and generalized auto regressive 

conditional heteroskedasticity models [22]. Their method outperforms the rest of the algorithms in 

almost of the cases. Finally, Qian et al., compare the performance of the GCRF model trained with 

an AdaBoost technique with that of a bagging-GCRF (a GCRF model trained with the bagging 

technique), a multilayer perceptron, a convolutional neural network, and a LSTM network. The 

results show that the proposed model is able to better forecast the distribution of short-term OD flows 

[27].  

It is important to note that both comparisons were performed with small OD matrices, so it is to be 

expected that when the size of the OD pairs increase, the statistical method component of these 

hybrid methods may not scale well. 

2.3 Summary  

In the evolving area of traffic management, identifying and understanding anomalies in traffic 

patterns and transport demand has become essential. Our review covers a range of methods, each 

contributing in its own way to our grasp and control of traffic systems. 

Emerging Technologies and Methodologies 

The methods proposed are part of the approach that focuses on time series data from OD matrices 

and sensors, concentrating, in this last case, on collective measures like vehicle counts, occupancy, 

and speed. In the case of anomaly detection in traffic patterns, this approach, rooted in data, marks 

a significant shift from earlier pattern-matching methods like the California and McMaster algorithms. 

These traditional methods, foundational in their time, often struggled with calibration issues and 

inflexible threshold settings. 

Recent developments have seen clustering techniques and Gaussian Mixture Hidden Markov 

Models gain traction in differentiating irregular congestion and pinpointing traffic anomalies. These 
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methods take a more detailed perspective of traffic behaviour, moving beyond the constraints of 

older models. Also, the combination of machine learning techniques and statistical methods, such 

as the boosting-GCRF, have proved to be robust under demand anomalies. 

Deep learning techniques, especially LSTM-based models, have also emerged as a powerful 

approach. Models such as convolutional-LSTM models allow blending traffic data with additional 

factors like weather conditions, and LSTM encoder-predictor models combine prediction and 

reconstruction tasks, being able to better capture the dynamics of the time series and achieving 

accurate multi-step forecasting. Yet, these sophisticated models sometimes face challenges related 

to computational demands and the quality of data, highlighting the need for robust and scalable 

solutions. 

The proposed anomaly detection methods integrate these advancements, adopting a data-driven 

and parameter-free approach similar to the SND methodology. This strategy combines robust 

statistical analysis with modern techniques, avoiding the difficulties associated with a lack of labelled 

data and system calibration. 

 

Future Challenges and Opportunities 

Looking ahead, several challenges and opportunities stand out. A major challenge is effectively 

managing large and complex datasets. Machine learning and deep learning models, particularly 

LSTM networks and hybrid models, have excelled in predictive accuracy. Nonetheless, making these 

models scalable and adaptable to diverse and larger datasets is an area that needs more work. 

Another challenge is in setting a clear and consistent definition of what an anomaly is. Anomalies 

are deviations from normal behaviour or expectations. However, in complex systems like traffic 

networks, what is considered normal can vary significantly based on factors like time of day, location, 

and external events. The ambiguity in defining anomalies arises because these factors create a wide 

range of "normal" conditions, making it challenging to pinpoint what is truly abnormal. 

To address this, anomaly detection algorithms in traffic management, operations, and control must 

be adaptive and context aware. They need to consider varying conditions and patterns, adapting 

their definitions of normal and abnormal accordingly. This requires sophisticated techniques like 

machine learning and deep learning, which can learn from data and adjust to new patterns over time. 

The quality of anomaly detection can be quantified by how accurately these algorithms identify real-

world issues without producing too many false positives or negatives. The quality of anomaly 

detection in traffic management systems hinges on accurately defining and recognizing anomalies, 

which requires understanding the context-specific nature of traffic and mobility patterns and 

employing advanced, adaptive algorithms capable of learning from diverse data sets. 

Present methods vary in their baseline definitions, using different statistical and machine learning 

tools to spot deviations. A more unified approach could improve how anomaly detection is compared 

and trusted across various systems and locations. 

Opportunities are present in the adoption of new technologies like real-time data processing. These 

technologies could greatly improve the accuracy and speed of anomaly detection systems. 

Additionally, integrating various data sources could offer a more complete picture of traffic patterns 

and transport demand, providing richer information for analysis and decision-making. 

The field of anomaly detection in traffic and transport demand is at an exciting turning point. With the 

rise of smarter cities and autonomous vehicles, sophisticated traffic management systems will 

become increasingly important. Embracing new technologies and methods while addressing current 

challenges is key to creating a future with better traffic efficiency and safety. 
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3 ANOMALY DETECTION IN TRAFFIC PATTERNS  

3.1 Understanding the anomalies 

The general purpose of anomaly detection in general is widely accepted as finding data that does 

not conform with the notions of normal behaviour. The main outcome of this problem is to identify 

such anomalies and provide an appropriate response when such anomalies occur. 

Understanding the nature of anomalies is fundamental in their detection, leading to the classification 

of outliers into three main categories [31]: 

1. Point Anomalies 

An outlier in this category is a data point lying outside the boundary of the normal region of 

observations, distinguishing it from regular points. 

2. Contextual Anomalies 

Anomalies in this category are context-specific, classifiable only within a particular context, 

hence there are 2 attributes that each data point should contain: 

• Contextual Attributes 

Indicate the context for a given instance. For instance, in time series, time itself 

serves as a contextual attribute, determining the position of each observation in 

the sequence. 

• Behavioral Attributes 

Refer to the characteristics of observations not bound by context. For example, 

in a spatial dataset describing the average consumption of a product worldwide, 

the amount at any specific location represents a behavior. 

3. Collective Anomalies 

Outliers of this kind emerge when a collection of related observations is anomalous 

concerning the entire dataset, even though each data point individually might not be an 

outlier. 

This categorization provides a foundational framework for understanding and classifying anomalies 

in diverse datasets, offering valuable insights into their distinct characteristics. For our project's 

purposes, at least in this iteration we are mainly focused on the 3rd category of anomalies. 

3.1.1 Types of Traffic Anomalies 

Traffic anomalies manifest in diverse forms, each necessitating specific attention and tailored 

remedial actions. Recognizing the diverse nature of these anomalies is vital for designing robust 

anomaly detection systems capable of addressing a wide array of real-world scenarios. Some 

common types of traffic anomalies which can be either due to planned (i.e. scheduled road closures 

for maintenance purposes) or unplanned (i.e. sudden congestion surges due to unexpected high 

demand) events and may include amongst others: 

1. Accidents 

Unexpected collisions or incidents on the road that disrupt the regular flow of traffic and may 

lead to congestion. 

2. Road Closures 
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Planned or unplanned closures of roads due to construction, maintenance, or unforeseen 

events, impacting traffic routes and flow. 

3. Inclement Weather Events 

Adverse weather conditions, such as heavy rain, snow, or fog, influencing traffic behaviour 

and causing unexpected patterns. 

4. Special Events or Gatherings 

Large-scale events, festivals, or gatherings leading to altered traffic patterns and increased 

congestion in specific areas. 

A keynote here is that for the scope of this deliverable we adopt a macroscopic approach, which 

means that the objective is not to detect single events like micro collisions, broken down vehicles or 

lane closures. Our aim is to detect when the collective performance of the inspected network is 

unusual in some sense. 

3.1.2 Anomaly Detection Techniques 

Effective anomaly detection in traffic patterns relies on the utilization of a wide range of advanced 

techniques. In this section, we explore diverse approaches, ranging from traditional statistical 

methods to machine learning and intricate deep learning. The choice of technique depends on the 

specific characteristics of the traffic data and ranges from traditional statistical methods that lay the 

groundwork with mathematical rigor, all the way to machine learning and deep learning approaches 

with more dynamic capabilities. 

Statistical Methods 

Statistical methods have long been employed for anomaly detection in traffic patterns. These 

approaches leverage mathematical models to analyze historical data and identify deviations from 

expected patterns. Metrics such as mean, standard deviation, and percentile analysis play a crucial 

role in detecting anomalies by quantifying deviations from the norm.  

Z-Score 

The Z-score measures how many standard deviations a data point is from the mean. Unusually 

high or low Z-scores can indicate anomalies in traffic volume or speed. 

Gaussian Mixture Models (GMM) 

GMM assumes that the data is generated from a mixture of several Gaussian distributions. 

Deviations from the assumed distributions may indicate anomalies in traffic patterns. 

Machine Learning Approaches  

Machine learning techniques have gained prominence in anomaly detection due to their ability to 

discern complex patterns and adapt to dynamic environments. Algorithms such as SVM, K-NN and 

Random Forests have demonstrated efficacy in learning and identifying anomalies from large and 

heterogeneous traffic datasets. 

Support Vector Machines (SVM) 

SVM classifies data by finding the hyperplane that best separates normal data from anomalies in a 

higher-dimensional space. The SVMs have been used for their ability to solve the problem of traffic 

incident detection, because it is adapted to produce a nonlinear classifier with maximum generality, 

and it has exhibited good performance as neural networks [32]. 
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OneClassSVM 

OneClassSVM specializes in detecting anomalies by creating a model that identifies the normal data 

distribution. It operates by finding a decision boundary that separates the majority of data points 

(seen as normal) from outliers. This approach is particularly effective in situations with a clear 

distinction between normal and anomalous data, making it a useful tool in traffic monitoring systems 

to identify unusual patterns or incidents. 

Local Outlier Factor (LOF)  

LOF is an algorithm designed for anomaly detection, focusing on the local density deviation of a 

given data point with respect to its neighbours. It calculates the local density of each point, comparing 

it to the densities of its neighbours to identify regions of similar density and points that are significantly 

different. LOF is adept at recognizing anomalies in varied data densities, which is beneficial in traffic 

systems for detecting irregularities in traffic flow or behaviour. 

Isolation Forest 

This method is based on characterizing anomalous traffic conditions by exploiting the fact that 

anomalies tend to be isolated. The most remarkable feature of this anomaly detection method is its 

high detection performance while having a very simple tuning procedure and an extremely low 

computational demand. [33] 

 

Deep Learning Approaches 

Deep Learning has emerged as a powerful tool for anomaly detection, particularly in handling 

intricate patterns within vast datasets. Deep Neural Networks, Convolutional Neural Networks, and 

RNN excel in capturing intricate relationships within traffic data. Deep learning approaches contribute 

significantly to the identification of anomalies by extracting high-level features and representations. 

Autoencoders 

Autoencoders are unsupervised machine learning models, specifically neural networks, which 

extract nonlinear features of traffic flow data that aim to reconstruct the input data. Anomalies are 

detected based on the reconstruction error between the input and the reconstructed data [34]. 

RNNs 

RNNs are effective for processing sequential data and can be employed to model temporal 

dependencies in traffic patterns, aiding in anomaly detection. 

 

Hybrid Approaches 

Hybrid anomaly detection methods integrate multiple techniques to harness the strengths of different 

approaches. Combining statistical models with machine learning algorithms or incorporating rule-

based systems enhances the overall detection accuracy [35]. Hybrid approaches offer flexibility and 

robustness, making them well-suited for addressing various challenges in anomaly detection. 

 

By utilizing these diverse anomaly detection techniques, it becomes feasible to design a 

comprehensive anomaly detection system capable of accurately identifying and responding to 

anomalies within traffic patterns. A keynote here that we need to take into consideration is identifying 

which one of the anomaly detection techniques fits best to our unique case, because as in Occam’s 

razor principle “The simplest solution is most often the best”. 
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3.1.3 Evaluation Metrics and Performance Measures  

Effective assessment of anomaly detection techniques requires a deep understanding of 

performance metrics and criteria. These metrics serve as the benchmarks for evaluating the 

accuracy and reliability of systems designed to identify anomalies in complex datasets. In this 

section, we explore the common metrics and criteria employed in the evaluation of anomaly detection 

methodologies. By comprehensively examining precision, recall, F1-score, AUC-ROC curves, 

sensitivity, specificity, accuracy, False Positive Rate (FPR), and True Positive Rate (TPR), we aim 

to unravel the intricate tapestry that defines the success of anomaly detection systems. Each metric 

contributes a unique perspective, shedding light on different aspects of performance, and 

collectively, they form the basis for rigorous evaluation and comparison. 

Performance Evaluation Criteria and Common Metrics: 

To quantify the effectiveness of anomaly detection algorithms, comprehensive performance 

evaluation criteria are essential. Key metrics such as sensitivity, specificity, and accuracy serve as 

benchmarks, quantifying the system's prowess in correctly identifying both anomalies and normal 

patterns. The critical parameters of FPR and TPR play a pivotal role in assessing the robustness 

and reliability of anomaly detection algorithms.1 

Most Common Metrics for Anomaly Detection:  

Within the literature, a diverse array of metrics exists to assess anomaly detection algorithms, 

encompassing precision, recall (or detection rate), and F1-score. While various definitions of these 

measures are present, we outline the most frequently referenced definitions, some of which are 

employed in this report to evaluate the developed models. 

Precision denotes the ratio of correctly predicted positive observations to the total predicted positive 

observations (incidents). Mathematically, precision is expressed as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠
 

 

Recall, also known as the detection rate or TPR, signifies the ratio of correctly predicted positive 

observations to all observations in the actual class. In the context of incident detection, a model is 

considered to correctly detect an incident if an alert was raised at any point during the incident. The 

recall formula is given by: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙  𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 

 

 

 

1 True Positive Rate (TPR) and False Positive Rate (FPR) Definitions: 

True Positive Rate (TPR): also known as sensitivity or recall, measures the system's aptitude in correctly identifying positive 

instances among the actual positives. Mathematically, TPR is expressed as TPR = TP / (TP + FN). 

False Positive Rate (FPR): evaluates the system's tendency to incorrectly label negative instances as positive. It is calculated as FPR 

= FP / (FP + TN). Striking a balance between TPR and FPR is paramount for achieving optimal performance in anomaly detection. 
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3.1.4 Challenges in Anomaly Detection 

Anomaly detection as every other problem comes with its set of challenges that demand careful 

consideration. In this section, we focus into three primary challenges: imbalanced data, model 

sensitivity, and scalability. Each challenge poses unique hurdles, from handling unevenly distributed 

datasets to fine-tuning model responsiveness and addressing scalability concerns. Understanding 

and mitigating these challenges are pivotal steps toward enhancing the robustness and reliability of 

anomaly detection methodologies. 

Model Sensitivity 

The sensitivity of anomaly detection models to variations in data patterns poses another significant 

challenge. Sensitivity refers to the model's responsiveness to subtle changes, making it prone to 

false positives or negatives. Achieving an optimal balance in model sensitivity is crucial for discerning 

genuine anomalies while avoiding excessive false alarms. 

Scalability 

Scalability emerges as a challenge when deploying anomaly detection systems to handle large-scale 

datasets or real-time streams of data. As the volume of data increases, traditional models may 

struggle to maintain efficiency and timeliness. Developing scalable solutions involves leveraging 

parallel processing, distributed computing, or selecting algorithms inherently designed for scalability. 

Imbalanced data 

One of the foremost challenges in anomaly detection stems from imbalanced datasets, where the 

instances of normal patterns significantly outweigh those of anomalies. In such cases, models can 

achieve high accuracy simply by predicting the majority class (usually the normal cases), while failing 

to effectively detect the rare anomalies, which are often the most critical to identify. 

Addressing this challenge necessitates techniques such as oversampling, under sampling, or the 

application of specialized algorithms designed for imbalanced scenarios.  

Balancing the dataset can in some cases also help in such scenarios, but it is important to approach 

it carefully, especially since anomalies are inherently rare in real-world scenarios. Here is a sample 

of the most commonly used approaches: 

• Oversampling the Minority Class: Increasing the number of anomaly cases in our training 

set. This can be done using techniques like SMOTE (Synthetic Minority Over-sampling 

Technique). However, we ought to be cautious as oversampling can lead to overfitting in the 

minority class. 

• Under sampling the Majority Class: Reducing the number of normal cases in our training 

set. This should be done carefully to ensure that the remaining normal cases are still 

representative of the overall distribution. 

• Anomaly Detection-Specific Methods: Instead of traditional classification models, we can 

also consider using algorithms specifically designed for anomaly detection, which are often 

better suited for handling imbalanced datasets. Algorithms like Isolation Forest or LOF are 

examples that could be used to address the aforementioned issue. 

• Adjusting Class Weights: For some models, we can adjust the class weights to make the 

model pay more attention to the minority class. This can be done by assigning a higher weight 

to the anomaly class. 
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3.2 Evaluation Metrics:  

Lastly, we can use evaluation metrics that are more informative for imbalanced datasets, such as 

precision, recall, F1-score, and AUC-ROC, rather than accuracy. Methodology and Implementation 

This section outlines the chosen methodology for developing the Advanced Anomaly Detection 

framework within the CONDUCTOR project, elaborating on the essential techniques and strategies. 

It also provides the necessary background for understanding how anomaly detection is uniquely 

applied and integrated into the broader scope of the CONDUCTOR project's objectives. 

 

 

Figure 1 Steps to Anomaly Detection Service Implementation 

3.2.1 Data Ingestion and Preprocessing 

3.2.1.1 Data Ingestion 

Data Ingestion is crucial for the implementation of all the subsequent services that will be developed 

as part of the CONDUCTOR project. The gathering of data from various sources to create multi-

dimensional data points, known as vectors, is key for the services to be optimized. These data can 

be used immediately or stored for future access and utilization. The foundation of any analytics and 

machine learning application is rooted in data ingestion. This process can occur in real-time, 

continuously streaming data from its sources, or through periodic imports of data in either large 

batches or smaller, more frequent micro-batches, but for further details on this phase of the project, 

refer to the CONDUCTOR deliverable D3.1(Specification and initial version of data gathering, 

harmonization, fusion and analysis techniques). 

In the broader CONDUCTOR architecture, the data ingestion on the Anomaly Detection service will 

be implemented through an API endpoint, exposed from the CCAM and traffic data space. Since we 

are in an earlier stage of the implementation process, using an AGILE approach on the whole 

spectrum of the project, we are going to ingest the data directly from the source, which is a Greek 

Governmental site (data.gov.gr). This process will be substituted by a direct ingestion from the 

CONDUCTOR data space as the project matures. 
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3.2.1.2 Data Exploration and Preprocessing 

This step of the process is essential, as we gather the first insights from the acquired data. This 

stage of the process is, in a majority of the time, one of the most time-consuming. In cases where a 

data harmonization stage has occurred beforehand and the data are well defined and understood, 

this stage can be skipped. It is essential though for the user to have a complete understanding of 

the data types and characteristics before moving to the next step (preprocessing), which is the 

following step of the process. 

The first step of the data pipeline after the data is ingested in the system is the data preprocessing 

stage, where a series of techniques are implemented in order to cleanse, integrate and transform 

the data to the desired form. This has to be performed to improve the overall data quality, which 

could later on prove to be substantial in the performance and efficiency of our models. 

The final step in the pre-processing phase is feature engineering, a critical process that involves 

creating meaningful variables from the raw data. This step requires both creativity and domain 

knowledge, as it involves selecting those aspects of the data that are most relevant to the problem 

at hand. By transforming and combining the raw data into features that can better represent the 

underlying patterns, we significantly enhance the predictive power of our models. This is one of the 

key aspects of why a “rich” dataset is important in the process, as it allows better feature engineering, 

which not only aids in improving model accuracy but also plays a pivotal role in making the models 

more interpretable and aligned with the specific aspects of the problem at hand. 

3.2.1.3 Model Selection 

In the model selection phase, there are three main steps that need to be implemented to ensure a 

successful selection of the most appropriate models. Those are: 1) Model Building, 2) Model 

Training, and 3) Model Validation and Evaluation. 

Model Building 

The building phase in model selection is a cornerstone of the Anomaly Detection service in the 

CONDUCTOR project. This stage involves the careful selection of appropriate models that align with 

the unique requirements and characteristics of traffic anomaly detection. Given the complexity and 

variability of traffic data, Frontier focuses on selecting models that are not only robust in handling 

large datasets but also sensitive enough to accurately detect subtle anomalies. This includes 

considering approaches that span from rule-based approaches such as Anomaly Detection Toolkit 

to various machine learning and deep learning architectures, each with their specific strengths. 

Models like Isolation Forest, SVM, OneClassSVM, LOF and neural networks will be evaluated for 

their suitability. The aim is to ensure that the chosen models can effectively handle the intricacies of 

traffic data, such as seasonal variations, peak hour patterns, and unexpected incidents. 

Model Training 

Once the models are built, the next critical step is model training. This phase involves feeding the 

pre-processed and feature-engineered data into the models. The training process is iterative, where 

models learn to distinguish between normal traffic behavior and anomalies. An essential aspect of 

this phase is parameter tuning, where we adjust various settings within each model to optimize 

performance. This might include tuning the learning rate in neural networks or the depth of trees in 

random forest models. Regularization and data balancing techniques will also be employed to 

prevent overfitting, ensuring that our models generalize well to new, unseen data. 

Model Validation and Evaluation 

The final and perhaps most crucial phase in the model selection process is validation and evaluation. 

This step involves testing the trained models on a separate dataset that was not used during the 
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training phase. It's a critical step to assess how well the model performs in a real-world scenario. We 

employ a range of metrics to evaluate the model's performance, including precision, recall, F1-score, 

and the area under the ROC curve (AUC-ROC). These metrics will help us understand not just the 

accuracy of our models but also their ability to minimize false positives and false negatives – a key 

requirement in anomaly detection. Additionally, we plan to use confusion matrices to gain a clearer 

understanding of the model's performance across different classes. The evaluation phase will guide 

us in selecting the best-performing model or ensemble of models for deployment in the 

CONDUCTOR ecosystem. 

3.3 Implementation and Preliminary Results 

As part of this deliverable, and since at the time of writing the implementation phase of the project 

has not yet started, FI has decided to use the Greek use case (Athens) as a basis for an initial 

implementation of the Anomaly Detection module, mainly for two reasons. The first reason being to 

showcase the possible capabilities of such service and its overall added value to the CONDUCTOR 

project and the second being to also showcase the importance of the data availability, that is of utter 

most importance for the implementation of the best anomaly detection techniques that are described 

in previous chapters. 

3.3.1 Technical Architecture  

At the moment, with the project being at an early technical development phase, FI has created an 

initial technical architecture of the Anomaly Detection component. This architecture uses as a Data 

Layer only the datasets used for the implementation of the initial models, results of whom will be 

presented onwards on the deliverable. The architecture will become more mature as the overall 

project moves into a more mature development phase.  

The Anomaly Detection module currently uses loop detector historical data, obtained from the Greek 

Government that was mentioned previously, containing timeseries data for the whole Attika 

peninsula and a set of synthetic data for anomalies. Later on, the data used in this module for the 

Greek use case will be enriched from different sources with one of the most important ones being 

the geo-based data from Athen's operator OASA. 

As specified in the project’s Grant Agreement, OASA will define the specific scenarios to be executed 

in the framework of this use case and provide data (supply and demand) for the transit system. 

NTUA will select project solutions and relevant case scenarios to be simulated within the Athens 

testbed. NTUA will also provide, calibrate, and integrate solutions in the Athens testbed and execute 

the experiments, part of which requires input from the Anomaly Detection module (Task 3.5). 
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Figure 2 Initial Technical Architecture of Anomaly Detection module 

For the initial technical implementation of the module, the programming language Python is used as 

the main development language. In particular several python libraries have been incorporated into 

the scripts such as: pandas, scikit-learn, TensorFlow, NumPy, pycarret, keras for data manipulation, 

modeling and, matplotlib, seaborn, statsmodels.graphs for visualization. 

3.3.2 Data 

In this section, we will explain the data sources used and the data manipulation process before 

providing the final datasets to the models. 

3.3.2.1 Inductive Loop Detectors (ILDs) 

 ILDs are a common technology in traffic data gathering, valued for their ability to measure essential 

traffic parameters such as speed, volume, occupancy, density, queue, and location. However, it's 

important to note that ILDs, despite their advantages, have known issues with reliability and 

accuracy. This is partly due to their extensive use over the decades without consistent maintenance 

or replacement. Thus, while ILDs provide valuable traffic insights, their potential malfunctions and 

inaccuracies should be carefully considered in traffic monitoring, management, and planning and an 

analysis of the data is essential before use. Those parameters include among others: 

• Speed: This parameter according to the data providers claims that it measures the velocity 

at which vehicles are traveling over a specific section of the road. It is usually expressed in 

kilometers per hour (km/h) or miles per hour (mph). Speed data is crucial for understanding 

traffic flow and identifying potential congestion or hazardous conditions, but most ILDs 

typically estimate vehicle speeds under restrictive conditions and while they can provide 

valuable insights, the specific measurement may prove to be less accurate than the actual. 
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• Volume: This refers to the number of vehicles passing a point on a roadway over a specified 

period. It is a fundamental measure of road usage and is often used to analyze traffic load 

and to plan for road capacity and maintenance. 

• Occupancy: This parameter indicates the proportion of time that a point on the road is 

occupied by vehicles. It is expressed as a percentage and is used to estimate how much of 

the road space is being utilized at any given time. High occupancy rates can signal heavy 

traffic or congestion. 

• Density: Traffic density is the number of vehicles occupying a certain length of the road at a 

given time. It is typically measured as vehicles per kilometer or mile. This measure helps in 

assessing the level of congestion on a road segment. 

• Queue: This refers to a line of vehicles waiting, often at traffic signals, toll booths, or other 

points of delay. Queue length can be an important indicator of congestion levels and the 

efficiency of traffic control measures at intersections. 

• Location: While not a traffic flow characteristic like the others, the location parameter in traffic 

data collection refers to the specific point or segment of the roadway where the data is being 

collected. Accurate location data is critical for correlating traffic parameters to specific parts 

of the road network. 

3.3.2.2 Location of ILD Sensors 

For this specific demonstration, as we have already mentioned the data are collected from ILD 

sensors from the Attica peninsula and are provided through the use of an API, from the Greek 

Government as a semi-open dataset (token authentication required). 

 

Figure 3 Athens ILD locations 

As shown in the figure above (Figure 3), in the boxed area, the data come from all over Attika 

peninsula in 92 main roads. In the above figure a set of red marks has been added to showcase the 

areas that will be used for the purposes of the initial implementation. 
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3.3.2.3  Raw Data Characterstics 

As a reference and to train the anomaly detection models, FI will use a set that contains 3 months’ 

worth of data, for specific boulevards of Athens, that are usually high in terms of traffic flow, therefore 

have a higher chance of experiencing anomalies. Data from the ILDs comes in half hour intervals 

and from 482 different sensors spread all over Attica. The dataset used does not include a labeled 

column for actual anomalies, therefore for demonstration purposes, a synthetic dataset will be used, 

which will be substituted by a dataset with historical data that will include actual anomalies detected. 

The synthetic data is created using keeping the original dataset’s distributions, fluctuated by a set 

number of standard deviations, which are identified as anomalies. 

 

Figure 4 Raw Data in Pandas Data Frame Format 

The dataset shown in the figure above (Figure 4) is registering measurements of average speed, 

average flow (countedcars), sensor id (deviceid), as well as road information (road_info) about the 

geographical position of the respective sensor and the main road it belongs to (road_name). It is 

apparent that many of the ILD parameters are missing from this specific dataset, hence a good 

indication that the models will have room for improvement with the acquisition of better datasets from 

OASA. 

 

Figure 5 Missing Values from the Raw Data and Descriptive Statistics 

Although some basic parameters are missing, the dataset is fairly reliable (see Figure 5), from 2022 

onwards, having a mere 0.2% missing values, only in a specific column (road_info), for the time 

period under examination. The low percentage of missing values saves us, for this particular 

iteration, having to perform data imputation. Although not needed our module will include different 
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imputation methods such as: polynomial, free-flow imputation, spatial K-NN, weekday-based 

imputation to be utterly proofed for the future datasets that will be ingested. 

 

3.3.2.4 Further Data Processing and Transformation 

To generate higher quality results, there is a need for data filtering and transformation in order to 

emphasize the most important aspects of the data. Thus, we decided to proceed for this iteration by 

creating a more specific dataset that will explore the capabilities of the Anomaly Detection module, 

on a specific area, using two consequent sensors in one of the most congested roads of our use 

case.  

Examining the anomalies for a specific sensor instead of a broader network allows for detection of 

localized incidents or anomalies, thus can be more accurate in identifying small-scale variations in 

traffic patterns. Using this approach though, we might miss broader patterns affecting the entire road 

segment and it is also more complex to integrate the findings across multiple sensors. 

Using combined analysis for a set of sensors on the other hand, can be better for understanding the 

overall traffic flow and patterns and simplifies the whole process as the models treat the whole road 

segment as a single entity. This approach could dilute or miss localized incidents and might be less 

sensitive to small-scale anomalies. 

Having decided to proceed with the first approach we isolated two different sensors with device id 

MS259, MS261, which are located on Leoforos Kifissia's, one of the high-volume traffic avenues of 

Athens. First, we preprocessed the data and performed some exploratory analysis, exploring the 

data for each sensor (MS259 and MS261) separately. 

3.3.3 Exploratory Data Analysis 

The first step to better understanding the data that we are going to use to perform Anomaly Detection 

is to first provide a basic visual exploration, that can be enriched into a deeper analysis if we consider 

examining patterns by time of day or day of the week. 

 

Figure 6 Visual Representation of Single Sensor Data (MS259) 

As we can see in the above figure (Figure 6), the first plot (left side) shows the average speed of 

vehicles per half hour for the specified detector (MS259), and the second plot (right side) displays 
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the number of counted cars for the set period. These plots are essential for initial exploratory analysis 

and can help in identifying patterns, trends, and potential anomalies in the data. 

The heatmap displayed below (Figure 7) is also one more of the first visualizations in the exploratory 

analysis phase, that can clearly indicate anomalies or even missing values in the dataset. This 

heatmap displays information regarding the average counted cars for a set period, each hour of the 

day. Since in the exploration part of the dataset, we did not identify any missing values in the specific 

column (countedcars), we can safely assume the all the deep green (<20000) color of the heatmap 

indicates an unusually low count of cars for a set period of 3 days. 

 

 

Figure 7 Heatmap indicating usually high-low num of vehicles 

3.3.4 Anomaly Detection (Statistical Approach) 

Having an initial visual display helped us in a better understanding of the data, hence we moved to 

the first Anomaly Detection approach. 

3.3.4.1 Anomaly Detection using simple thresholds 

 For this, we used a fairly simple yet widely used statistical approach to identify data points that 

significantly deviated from the typical traffic pattern. We focused both on the average speed and the 

number of vehicles over time. 

This method involved calculating a threshold. The most widely used threshold in the literature was 

(mean ± 2 standard deviations), so we proceeded using this for identifying the anomalies. This is a 

common approach for anomaly detection in time series data.  
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Figure 8 Anomaly Detection using simple statistical thresholds  

The above plots (Figure 8) illustrate the anomaly detection results for one of the sensors that we 

isolated (MS259), for both parameters of average speed and number of vehicles. The red dots 

represent the anomalies detected in the data while the blue line plot shows the normal traffic pattern 

over time. As can be inferred from the plot (left side) there are certain periods where the average 

speed significantly deviates from the norm. Also, there are times when the number of cars is 

unusually high or low (right side). 

The key takeaways from this approach are that these anomalies could indicate various incidents or 

unusual traffic conditions, such as accidents, road closures, or unexpected events affecting the 

overall traffic of the network. These anomalies would also be of interest for further investigation, 

especially if we could correlate them with external events or data (like weather conditions, local 

events, and roadworks). 

3.3.4.2 Anomaly Detection using advanced thresholds 

While the first approach yielded some useful results, we decided to proceed in a more advanced 

statistical approach, to make our anomaly detection even more accurate by making it context-aware, 

based on time and day of the day.  

To do so we followed a more complex set of rules. As a first step we once more sorted the data into 

chronological order, but now we also created a new data frame that contained the average values 

for each set period of observation across the whole timespan of the dataset. Afterwards we 

proceeded to identify anomalies by comparing individual data points against the average value for 

their respective hours that are set as the new threshold. In this case anomalies are identified as 

values that deviate more than 20% from the hourly averages. 
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Figure 9 Anomaly Detection using advanced statistical thresholds 

In the figure above (Figure 9) we showed the results of the advanced statistic threshold by focusing 

on a single-day period for clearer visualization of the anomalies.  

On the first plot (left side) we can see the anomalies detected in comparison to the specific hourly 

average speed for the whole set period of the dataset. All the anomalies detected indicate a higher 

than usual average speed, which in turn might be an indication of unexpected low traffic.  

On the second one (right side) we can identify the anomalies regarding the average count of vehicles 

on an hourly basis. The anomalies detected in this plot show an unusual number of cars (both 

significantly lower and higher than average), in different periods of the day. 

The red and yellow dots of the plots represent anomalies, the blue and green line plots represent 

the normal average speed and vehicle count while the dashed lines on each plot represent the hourly 

averages for the whole period under study. 

Using this approach, we created two new columns on our data frame indicating if there is either a 

speed or a vehicle counts anomaly (Figure 10). 

 

 

Figure 10 Data Frame with added anomaly detection columns 

3.3.5 Anomaly Detection using a Machine Learning Approach 

After the Anomaly Detection using statistical approaches, we proceeded to approach the problem 

from a machine learning perspective. To do so it was essential to use a dataset that would consist 

of labelled data for anomalies, which are extremely important for the anomaly detection evaluation 

of the models, since the labelled data constitute the ground truth on which the performance metrics 

of our machine learning models are built. 
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Since no such dataset was available at the time of the first implementation that could be combined 

with our ILD dataset, we proceeded to create a synthetic dataset, with the anomaly column being 

based on a fluctuation of deviations from the average speed or the average number of vehicles, 

since either significant deviation constitutes an anomaly. We then merged the two datasets forming 

our final dataset that will be used for the anomaly detection algorithms (Figure 11). 

 

Figure 11 Dataset with synthetic anomaly data column 

We created the synthetic anomaly data points in a way that would simulate an actual labelled dataset. 

Meaning that there is a significant imbalance between normal cases and anomalies. Specifically in 

our case for the example of the isolated sensor MS259 that was one of the sensors we used in this 

implementation, for a set period (3 months), only 9 observations were labelled as anomalies. This 

small value makes sense, since we are examining one specific sensor, that is only influenced by 

deviations on traffic flow, only from specific areas of the whole network.  

The imbalance between normal cases and anomalies is a very important point in anomaly detection. 

This is because in many cases, models can achieve high accuracy simply by predicting the majority 

class, while failing to effectively detect the rare anomalies, which are often the most critical to identify 

(the subject of data imbalance is thoroughly explained in chapter 3.1.4). 

After the final dataset’s creation, we implemented a set of machine learning and deep learning 

algorithms (OneClassSVM, Isolation Forrest, LOF, LSTM) to conduct a first set of experiments. It is 

worth mentioning at this point, that due to the data imbalance, we proceeded to use the SMOTE 

technique, as it is a more refined technique than just oversampling the minority class by duplicating 

examples, which does not offer any new information to the model. We even experimented with the 

simultaneous use of different techniques.  It is also worth noting that there was also a fine-tuning 

phase of the algorithms, but due to the limitations of the datasets, there was not enough room for 

major improvements. An aspect which will be definitely improved vastly on the second iteration of 

the models, when a proper set of data will be provided. 

3.3.5.1 Evaluation of methods 

In the following tables (Table 1, Table 2), the basic evaluation metrics for the implemented models 

are displayed. The tables contain the values of precision, recall, and F1-score for both the anomaly 

detection (Table 1) and the norm detection (Table 2). Following the tables, we will draw some 

preliminary conclusions from the initial evaluation and a comparison between the methods used. 
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Table 1 Evaluation of models for non-anomalous traffic conditions 

Model Precision Recall f1-score 

Isolation Forest 0.99 0.73 0.85 
OneClassSVM 0.95 0.97 0.96 
LOF 0.93 0.99 0.96 
LSTM 0.97 0.98 0.97 
EnsembleModel 0.96 0.96 0.96 

Table 2 Evaluation of models for anomalous traffic conditions 

Model Precision Recall f1-score 

Isolation Forest 0.22 0.93 0.35 

OneClassSVM 0.64 0.43 0.49 

LOF 0.5 0.1 0.16 

LSTM 0.15 0.2 0.17 

EnsembleModel 0.63 0.6 0.55 

3.3.5.2 Conclusions 

The classification reports for the Advanced Anomaly Detection framework within the CONDUCTOR 

project present a solid view of the performance of various models. For non-anomalous instances, 

the models show a strong ability to correctly identify normal traffic conditions, with LSTM and 

Ensemble Models demonstrating particularly high precision and recall, resulting in F1-scores close 

to 0.97 and 0.96, respectively. This indicates a robust performance in distinguishing the regular traffic 

flow, which is crucial for maintaining a baseline standard in traffic management systems. 

In contrast, the detection of anomalous instances, which is arguably a more critical aspect of traffic 

management, exhibits varied performance across models. The Isolation Forest, while having a high 

recall of 0.93, falls short in precision, which is evident from its lower F1-score of 0.35. This suggests 

that while the model is adept at identifying a high rate of actual anomalies (high recall), it also 

misclassifies a considerable number of normal instances as anomalies (low precision). 

The OneClassSVM and Ensemble Model show a more balanced performance with F1-scores of 0.49 

and 0.55, respectively, indicating a reasonable trade-off between precision and recall. The LOF and 

LSTM models, however, underperform for anomaly detection, with F1-scores of 0.16 and 0.17, 

respectively, suggesting that these models may not be as effective in the current configuration for 

the specific task of detecting anomalies within the project's context. 

It is essential to note that the performance of anomaly detection models is often more challenging to 

optimize due to the rarity and variability of anomalies. The Ensemble Model, which combines the 

strengths of various models, shows promise with the highest F1-score among anomaly detection 

methods, demonstrating the potential benefits of a hybrid approach. 

To further enhance the detection of anomalies, it may be beneficial to consider additional tuning of 

model parameters, incorporation of more diverse training data, or exploration of novel modelling 

techniques tailored to the unique characteristics of traffic data. Moreover, continuous iteration and 

validation using real-world data are imperative to refine these models, as reflected in the AGILE 

approach adopted by the CONDUCTOR project. 

In conclusion, the models' ability to accurately identify non-anomalies lays a strong foundation for 

effective traffic management. However, the critical task of anomaly detection necessitates further 

refinement to improve precision without sacrificing recall. The ongoing development and iteration of 

these models are vital to achieving the CONDUCTOR project's goal of revolutionizing transportation 

through state-of-the-art traffic and fleet management solutions. 
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4 ANOMALY DETECTION IN TRANSPORT DEMAND  

A proper characterisation of the demand mobility patterns allows the detection of anomalies, the 

identification of possible factors leading to them (weather conditions, especial events, etc.), and the 

analysis of their impact on the transport network (supply). Based on this analysis, demand anomalies 

can be classified, and response plans can be defined. Moreover, as some of the causes are known 

in advance (e.g., weather conditions, planned events such as football matches or demonstrations, 

etc.), for some of these classes the anomalies can be foreseen and mitigated. 

With this objective in mind, Nommon is developing a demand anomaly detection algorithm. This 

algorithm first forecasts the expected demand for a day based on the historical demand, given by 

the OD matrices that Nommon generates from mobile network data (MND) using the Nommon 

Mobility Insights solution2, and then compares it with the observed demand of the day, given by the 

OD matrix of the day computed also using Nommon Mobility Insights solution. From this comparison 

it detects whether there is an anomaly or not. This comparison is performed based on confidence 

intervals￼￼￼. 

The objective of this development is twofold. First, we want to develop a time series model able to 

accurately capture and forecast the mobility demand patterns. Besides, it should be able to detect 

anomalies in the demand and provide some probable explanation of them (based on calendar 

events). 

The expected demand can be used for the strategic planning of the transport network. While the 

anomalies can be analysed and categorised based on their possible causes and impacts, allowing 

anticipation and more efficient decision-making. 

4.1 Schema of the solution 

The diagram on Figure 12 shows the workflow of the demand anomaly detection algorithm to be 

developed by Nommon. All modules and the relations between them are described below: 

1. The demand prediction algorithm predicts the demand (as OD matrices for a given zoning 

system) of the next day based on multi-dimensional time series analysis over historical 

demand information (OD matrices). 

2. The demand anomaly detection algorithm identifies whether there is an anomaly in the 

observed demand on the day by comparing it with the predicted one. We define as potential 

anomalies all observed demand values that lie outside a certain confidence interval around 

the expected value. 

3. The general private mobility matrix segmented by mode is generated for the day with the 

anomaly in the demand using Nommon Mobility Insights solution. 

4. The detected anomaly and its impact in the demand of each mode is assessed.  

 

 

 

2 Nommon Mobility Insightssolution obtains travel demand information from anonymised mobile network data, generating OD flows 

for the sampled mobile phone users and expanding these flows to the total population using census data, based on the user’s 

residence location, age, and gender. 

https://www.nommon.es/products/mobility-insights/
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Figure 12 Demand anomaly detection algorithm workflow. 

4.2 Data used 

The main data source for this development are the OD matrices generated by Nommon. These 

matrices are generated from MND using the Nommon Mobility Insights solution. 

The matrices are segmented by trips and travellers’ characteristics. The travellers’ characterization 

includes age, gender, residence place, income, etc. The trips’ characterisation includes purpose, 

time and type of mobility, distance, passenger mobility and professional drivers & delivery. For this 

last characterisation, Nommon is also developing and algorithm for the identification and 

characterisation of delivery trips and estimation of delivery demand (see Section 4.2.1 of Deliverable 

D3.1 for more details on this development). 

The data needed to generate the OD matrices are (see Deliverable D1.2 for more details on the data 

sources): 

- Activity and travel diaries generated from MND using Nommon proprietary algorithms.  

- Spanish census data, provided by the Spanish National Statistics Institute. 

- Land use information, provided by the Spanish National Geographic Information Centre 

(CNIG). 

- Transport supply data, provided by the Statistics Institute of the Community of Madrid and 

the Madrid Regional Transport Consortium. 

- Travel surveys, provided by the Regional Transport Authority of Madrid. 

4.3 Methodology 

The methodology prosed is based on time series forecasting methods. This way, we consider the 

historical demand OD matrices as a multi-dimensional time series.  

4.3.1 Analysis of historical data: time series 

Time series are ordered sequences of values of a random variable documented in constant time 

intervals.  
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Time series can be broken down into three components: trend, seasonal pattern or seasonality, and 

noise. The seasonal pattern appears when the time series is affected by seasonal factors, which 

occur in a fixed and known period (a day of the week, a month, a season, ...), causing a regular 

pattern of changes. While the trend reflects the progression of the long-term time series, that is, the 

increasing or decreasing direction of the data. Finally, the noise component reflects the random and 

irregular influence of the data. FigureFigure 133 shows an example of a time series decomposition, 

where "data" corresponds to the original series, "seasonal" corresponds to the seasonal component, 

"trend" corresponds to the trend component, and "remainder", to the noise component. 

Some time series forecasting algorithms perform a decomposition of the time series in their 

components and work with them independently, others consider the time series as a whole. 

 

Figure 13 Example of a time series decomposition. 

4.3.2 Time series forecasting models 

The machine learning algorithm used to generate the forecasting models are the long short-term 

memory (LSTM) networks. Given the data size and according to the literature review, this algorithm 

is considered to be very appropriate for this task. 

LSTMs are a class (or extension) of recurrent neural networks able to capture nonlinear patterns in 

time series data, while considering the inherent characteristics of non-stationary time series data. 
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Neural networks are a type of deep learning algorithm capable of learning complex patterns and 

non-linear data trends, without the need to make input assumptions. A neural network essentially 

consists of a sequence of layers, each of them having certain nodes called neurons. The layers are 

divided into three groups: 

• An input layer, the nodes of which represent the input variables. 

• A variable number of hidden layers, used to process and transform the input data for the 

generation of more complex variables that allow the model to understand and analyse the 

data. 

• An output layer that represents the solution to the problem. 

Based on the information flow, neural networks can be divided into two main categories: feed-forward 

neural networks, which only consider information flow in one direction (usually from the previous 

layer); and recurrent neural networks, which consider the flow of information from both the previous 

and the next layer. 

4.3.2.1 Development and validation of the models 

Neural networks have a series of internal parameters, called weights, that are iteratively adjusted 

during training to minimise a loss function using iterative optimization algorithms such as gradient 

descent (which finds local minima of differentiable functions by iteratively taking points along the 

direction in which the first derivative of the function decreases). The objective of the training phase 

is precisely to adjust the value of these internal parameters so that the predictive error (measured 

with the loss function) is minimal. When starting the training, these parameters are randomly 

initialised, and their values are refined as the training progresses.  

For the first iteration of the algorithm, the model will be trained using the mean square error as the 

loss function and the optimization method Adam (adaptive moment estimation), which is a faster and 

more efficient extension of the stochastic gradient descent. 

Following standard machine learning practices, the data will be split into three datasets, each of 

which assists in a different task of the model implementation process: 

• Training set: this set is used to train the model. 

• Validation set: this set is used to select the most appropriate combination of hyperparameters 

for the model (this is explained in Section 4.3.2.2). 

• Test set: once the model is trained, this set is used to assess its predictive performance on 

new data (i.e., its ability to generalise). 

Recall that the model predicts the demand of one day based on the observed demand of the previous 

days. This predictive performance is assessed using the square root mean square error (RMSE) and 

the mean absolute percentage error (MAPE) metrics, defined as follows: 

 

where 𝑛 is the number of observations in the set, 𝑦𝑡 is the actual value of the series at time 𝑡, and 𝑦̂𝑡 

is the model prediction at time 𝑡. 

The RMSE provides the mean number of predictive errors at each predicted instant. While the MAPE 

provides the average percentage that the predictive errors suppose with respect to the real value at 

each predicted instant. It is important to bear in mind that, given the same predictive error with 

respect to the RMSE metric, the MAPE metric can vary a lot depending on the real value of the 



Anomaly detection in transport demand   

PU (public) | V1.0 | Final   Page 35 | 44 

variable. For example, a prediction of 3 when the real value is 4 is not the same as a prediction of 

49 when the real value is 50. In both cases, the RMSE is 1, however, in the first case the MAPE is 

¼= 0.25 and in the second, 1/50=0.02, this means that the MAPE metric penalises more the 

predictive error of small values of the variable in question. Therefore, both metrics provide 

complementary information on the predictive error, giving both absolute and relative information with 

respect to the real value, and it is important to take both values into account when interpreting the 

results. 

4.3.2.2 Hyperparameter tuning 

The objective of hyperparameter tuning is to find the most suitable combination of hyperparameters 

that allows the model to achieve a good predictive performance. In order to perform the 

hyperparameter tuning, a grid search is implemented. A grid search consists in defining a set of 

values for each hyperparameter that needs to be specified, training the model for each of the possible 

combinations of values (or for a subset of them), and analysing the results for each combination.  

Once a first evaluation of the data is performed, a set of values to implement the grid search will be 

fixed. 

In order to ensure good predictive performance, the combination of hyperparameters selected should 

produce stable results and be non-dependent of the random initialisation of the model weights. To 

measure this, cross-validation is used to train the model for each hyperparameter combination. This 

technique, which essentially consists in training the model using different random splits of the training 

set (called folds) and evaluating the predictive performance on different validation sets, is adapted 

to time series in order to exploit its benefits. The adaptation respects the time-dependence of the 

samples by taking all the samples for both the training and the validation folds to be consecutive. 

This procedure can be performed in two ways: 

• Split cross-validation: this method iteratively extends the training fold with the ones used for 

validation (of fixed size), training the model with the extended fold each time (see Figure 14). 

 

Figure 14 Split cross-validation for time series. In blue, the folds used for training and, in red, the folds used 

for validation. 
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• Blocked cross-validation: this method takes disjoint training and validation folds of fixed size 

to train the model (see Figure 15). 

 

Figure 15 Blocked cross-validation for time series. In blue, the folds used for training and, in red, the folds 

used for validation. 

As the final model should be retrained periodically, the idea is to use as little data as possible to 

generate the time series and train the models. For this reason, we use the split cross-validation 

method. With this method, we can find a trade-off between the model that best fits the data and the 

number of samples needed to train it.  

Once the grid search is implemented, the results for each hyperparameters combination are 

analysed, for both the training folds and validation folds, looking for a trade-off between the predictive 

error on the training set and the validation set. With that, we ensure that the model fits well to the 

training set and generalises well.  

Finally, the model is retrained with the chosen combination of hyperparameters on the full training 

set and used to predict the flow in the time interval corresponding to the test set, with the aim of 

analysing the decay of the prediction’s accuracy along the days. 

4.3.3 Confidence interval computation 

Bollinger bands are used to define the confidence interval for each time series. Bollinger bands 

consist of an n-period moving average, an upper bound (band) at k times an n-period standard 

deviation above the moving average, and a lower bound (band) at k times an n-period standard 

deviation below the moving average. 

Two types of confidence intervals will be computed, to distinguish among three kinds of values: 

• normal values: values that lie within 1.5 standard deviation above and below the moving 

average, 

• outlier values: values that lie between 1.5 and 3 standard deviations above and below the 

moving average, and 
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• extreme values: values that lie outside 3 standard deviations above or below the moving 

average. 

Based on these intervals, anomalies will be detected and characterised. 

4.3.4 Analysis of the anomalies 

Finally, once the anomalies are detected, the specific OD pairs presenting the anomalies are 

identified and the calendar events (festivities, holidays, etc.), weather conditions, and planned events 

of the set of origins and destinations are analysed to look for possible explanations. 

Additionally, the impact on the demand of each mode is analysed, to plan for needed actions in the 

supply to adjust to the demand change.  To illustrate this, let us suppose that the demand one day 

is 2/3 higher than expected, and that this demand is concentrated in two modes, let us say private 

car and public transport. By analysing the increase in the demand in both modes, we can study the 

overload that these modes may experience and the impact on the performance of the service. 

This information combined can potentially be used to anticipate these anomalies and mitigate their 

effects, being really useful in the decision-making process. 
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5 CONCLUSIONS 

5.1 Summary 

Deliverable 3.3 documents the work that is being conducted primarily by Frontier with the substantial 

contribution of Nommon as part of Task 3.5 (Anomaly detection), which aims to develop advanced 

situation detection capabilities to enable the identification of traffic patterns and emerging critical 

network and traffic anomalies that require specific remedial actions and response plans. Typical 

cases of such situations include emerging congestion and accidents posing the need for adaptation 

of the network, redirection and coordination of traffic.  

This deliverable is a key document in developing anomaly detection routines and it begins with a 

detailed literature review. This review focuses on the two main types of anomalies addressed by 

CONDUCTOR: anomalies in traffic patterns and anomalies in transport demand. The review not only 

summarizes current knowledge but also identifies future opportunities and challenges, such as 

improving the adaptability and scalability of models and effectively using real-time data in anomaly 

detection. 

After the literature review, the deliverable outlines the methodologies developed for Anomaly 

Detection in traffic patterns and transport demand. This section represents the first step of the 

project, where methods for detecting and managing these anomalies are established and explained. 

For traffic pattern anomalies, the document describes the early stages of development of the 

detection component, including the technical procedures and initial findings. These include 

evaluating various machine learning and deep learning algorithms, with a subset already partially 

implemented. These initial results help demonstrate the assessment and comparison of different 

models, which will later be applied in the Athens use case. In contrast, for transport demand 

anomalies, the document mainly focuses on setting up the methodology, laying the groundwork for 

further development. 

Equally important is the fact that through our research work in the scope of this deliverable, we 

addressed some research gaps which were identified from the conducted literature review, whilst 

also tried contributing to their fulfilment by: 

• Using various techniques to address the imbalance of data, such as ensemble of different 

oversampling of the minority and under sampling of the majority class; 

• Using state of the art machine and deep learning models with the underlying help of classic 

yet refined statistical approaches. 

5.2 Limitations 

In the realm of traffic network anomaly detection, several limitations are evident. One primary 

challenge is the differentiation between normal traffic variations and genuine anomalies. This can 

lead to a high rate of false positives, where normal conditions are incorrectly flagged as anomalies, 

a phenomenon that was evident also in the initial implementation of the anomaly detections models 

from FI. Additionally, the quality and granularity of traffic data significantly impact the accuracy of 

anomaly detection. Incomplete or noisy data can skew results, leading to misinterpretations of traffic 

conditions. Moreover, the dynamic nature of traffic patterns, influenced by factors like weather, 

events, and unexpected incidents, adds complexity to the task of reliable anomaly detection. This 

necessitates sophisticated algorithms capable of adapting to varied and evolving traffic scenarios. 
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5.3 Future Work 

As future steps, regarding the traffic anomalies detection algorithm, the focus should shift towards 

enhancing the accuracy and adaptability of detection algorithms. This involves integrating more 

diverse data sources, such as real-time weather information, public transport and even floating car 

data to better understand the factors influencing traffic patterns. Additionally, employing advanced 

machine learning techniques, including deep learning, could provide a broader understanding of 

complex traffic scenarios.  

Efforts should also be made to improve the real-time processing capabilities of these systems, 

enabling quicker and more effective responses to identified anomalies. One more important aspect 

that should be addressed is the forecasting aspect of the anomalies, that could effectively predict an 

anomaly before it even happens. Furthermore, expanding the scope of research to include a wider 

variety of urban settings would provide valuable insights into the scalability and versatility of these 

detection systems. 

Finally, the transport demand anomaly detection algorithm will be implemented and iteratively 

refined. 
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A. ABBREVIATIONS AND DEFINITIONS 

Term Definition 

EVT Extreme Value Theory 

FPR False Positive Rate 

GCRF Gaussian Conditional Random Field 

 GMM 

 

 Gaussian Mixture Models 

 

ILD Inductive Loop Detectors 

K-NN K-Nearest Neighbor 

LOF Local Outlier Factor 

LSTM Long Short-Term Memory 

MAPE Mean Absolute Percentage Error 

MND Mobile Network Data 

OD Origin-Destination 

PCA Principal Component Analysis 

RMSE Root Mean Square Error 

RNN Recurrent Neural Network 

SMOTE Synthetic Minority Oversampling Technique 

SVM 

 

Support Vector Machine 

 

TPR True Positive Rate 

  

 


